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Quadratic residues and quadratic reciprocity

12.1 Quadratic residues

For positive integer n, an integer a is called a quadratic residue modulo
n if gcd(a, n) = 1 and x2 ≡ a (mod n) for some integer x; in this case, we
say that x is a square root of a modulo n.

The quadratic residues modulo n correspond exactly to the subgroup of
squares (Z∗n)2 of Z∗n; that is, a is a quadratic residue modulo n if and only
if [a]n ∈ (Z∗n)2.

Let us first consider the case where n = p, where p is an odd prime. In
this case, we know that Z∗p is cyclic of order p−1 (see Theorem 9.16). Recall
that the subgroups any finite cyclic group are in one-to-one correspondence
with the positive divisors of the order of the group (see Theorem 8.31). For
any d | (p−1), consider the d-power map on Z∗p that sends α ∈ Z∗p to αd. The
image of this map is the unique subgroup of Z∗p of order (p− 1)/d, and the
kernel of this map is the unique subgroup of order d. This means that the
image of the 2-power map is of order (p− 1)/2 and must be the same as the
kernel of the (p− 1)/2-power map. Since the image of the (p− 1)/2-power
map is of order 2, it must be equal to the subgroup {±1}. The kernel of the
2-power map is of order 2, and so must also be equal to the subgroup {±1}.

Translating from group-theoretic language to the language of congruences,
we have shown:

Theorem 12.1. For an odd prime p, the number of quadratic residues
a modulo p, with 0 ≤ a < p, is (p − 1)/2. Moreover, if x is a square
root of a modulo p, then so is −x, and any square root y of a modulo p

satisfies y ≡ ±x (mod p). Also, for any integer a 6≡ 0 (mod p), we have
a(p−1)/2 ≡ ±1 (mod p), and moreover, a is a quadratic residue modulo p if
and only if a(p−1)/2 ≡ 1 (mod p).
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Now consider the case where n = pe, where p is an odd prime and e > 1.
We also know that Z∗pe is a cyclic group of order pe−1(p − 1) (see Theo-
rem 10.1), and so everything that we said in discussing the case Z∗p ap-
plies here as well. In particular, for a 6≡ 0 (mod p), a is a quadratic
residue modulo pe if and only if ape−1(p−1)/2 ≡ 1 (mod pe). However,
we can simplify this a bit. Note that ape−1(p−1)/2 ≡ 1 (mod pe) implies
ape−1(p−1)/2 ≡ 1 (mod p), and by Fermat’s little theorem, this implies
a(p−1)/2 ≡ 1 (mod p). Conversely, by Theorem 10.2, a(p−1)/2 ≡ 1 (mod p)
implies ape−1(p−1)/2 ≡ 1 (mod pe). Thus, we have shown:

Theorem 12.2. For an odd prime p and integer e > 1, the number of
quadratic residues a modulo pe, with 0 ≤ a < pe, is pe−1(p−1)/2. Moreover,
if x is a square root of a modulo pe, then so is −x, and any square root y of
a modulo pe satisfies y ≡ ±x (mod pe). Also, for any integer a 6≡ 0 (mod p),
we have ape−1(p−1)/2 ≡ ±1 (mod p), and moreover, a is a quadratic residue
modulo pe iff ape−1(p−1)/2 ≡ 1 (mod pe) iff a(p−1)/2 ≡ 1 (mod p) iff a is a
quadratic residue modulo p.

Now consider an arbitrary odd integer n > 1, and let n =
∏r

i=1 p
ei
i be its

prime factorization. Recall the group isomorphism implied by the Chinese
remainder theorem:

Z∗n ∼= Z∗
p

e1
1
× · · · × Z∗per

r
.

Now,

(α1, . . . , αr) ∈ Z∗
p

e1
1
× · · · × Z∗per

r

is a square if and only if there exist β1, . . . , βr with βi ∈ Z∗
p

ei
i

and αi = β2
i

for i = 1, . . . , r, in which case, we see that the square roots of (α1, . . . , αr)
comprise the 2r elements (±β1, . . . ,±βr). Thus we have:

Theorem 12.3. Consider an odd, positive integer n with prime factoriza-
tion n =

∏r
i=1 p

ei
i . The number of quadratic residues a modulo n, with

0 ≤ a < n, is φ(n)/2r. Moreover, if a is a quadratic residue modulo n,
then there are precisely 2r distinct integers x, with 0 ≤ x < n, such that
x2 ≡ a (mod n). Also, an integer a is a quadratic residue modulo n if and
only if it is a quadratic residue modulo pi for i = 1, . . . , r.

That completes our investigation of the case where n is odd. We shall
not investigate the case where n is even, as it is a bit messy, and is not of
particular importance.
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12.2 The Legendre symbol

For an odd prime p and an integer a with gcd(a, p) = 1, the Legendre
symbol (a | p) is defined to be 1 if a is a quadratic residue modulo p, and −1
otherwise. For completeness, one defines (a | p) = 0 if p | a. The following
theorem summarizes the essential properties of the Legendre symbol.

Theorem 12.4. Let p be an odd prime, and let a, b ∈ Z. Then we have

(i) (a | p) ≡ a(p−1)/2 (mod p); in particular, (−1 | p) = (−1)(p−1)/2;

(ii) (a | p)(b | p) = (ab | p);
(iii) a ≡ b (mod p) implies (a | p) = (b | p);
(iv) (2 | p) = (−1)(p2−1)/8;

(v) if q is an odd prime, then

(p | q) = (−1)
p−1
2

q−1
2 (q | p).

Part (v) of this theorem is called the law of quadratic reciprocity.
Note that when p = q, both (p | q) and (q | p) are zero, and so the statement
of part (v) is trivially true—the interesting case is when p 6= q, and in this
case, part (v) is equivalent to saying that

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

Part (i) of this theorem follows from Theorem 12.1. Part (ii) is an imme-
diate consequence of part (i), and part (iii) is clear from the definition.

The rest of this section is devoted to a proof of parts (iv) and (v) of this
theorem. The proof is completely elementary, although a bit technical.

Theorem 12.5 (Gauss’ lemma). Let p be an odd prime and let a be an
integer not divisible by p. Define αj := ja mod p for j = 1, . . . , (p−1)/2, and
let n be the number of indices j for which αj > p/2. Then (a | p) = (−1)n.

Proof. Let r1, . . . , rn denote the values αj that exceed p/2, and let s1, . . . , sk

denote the remaining values αj . The ri and si are all distinct and non-zero.
We have 0 < p − ri < p/2 for i = 1, . . . , n, and no p − ri is an sj ; indeed,
if p − ri = sj , then sj ≡ −ri (mod p), and writing sj = ua mod p and
ri = va mod p, for some u, v = 1, . . . , (p− 1)/2, we have ua ≡ −va (mod p),
which implies u ≡ −v (mod p), which is impossible.

It follows that the sequence of numbers s1, . . . , sk, p− r1, . . . , p− rn is just
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a re-ordering of 1, . . . , (p− 1)/2. Then we have

((p− 1)/2)! ≡ s1 · · · sk(−r1) · · · (−rn)

≡ (−1)ns1 · · · skr1 · · · rn
≡ (−1)n((p− 1)/2)! a(p−1)/2 (mod p),

and canceling the factor ((p − 1)/2)!, we obtain a(p−1)/2 ≡ (−1)n (mod p),
and the result follows from the fact that (a | p) ≡ a(p−1)/2 (mod p). 2

Theorem 12.6. If p is an odd prime and gcd(a, 2p) = 1, then (a | p) =
(−1)t where t =

∑(p−1)/2
j=1 bja/pc. Also, (2 | p) = (−1)(p2−1)/8.

Proof. Let a be an integer not divisible by p, but which may be even, and let
us adopt the same notation as in the statement and proof of Theorem 12.5;
in particular, α1, . . . , α(p−1)/2, r1, . . . , rn, and s1, . . . , sk are as defined there.
Note that ja = pbja/pc+ αj , for j = 1, . . . , (p− 1)/2, so we have

(p−1)/2∑
j=1

ja =
(p−1)/2∑

j=1

pbja/pc+
n∑

j=1

rj +
k∑

j=1

sj . (12.1)

Also, we saw in the proof of Theorem 12.5 that the integers s1, . . . , sk, p −
r1, . . . , p− rn are a re-ordering of 1, . . . , (p− 1)/2, and hence

(p−1)/2∑
j=1

j =
n∑

j=1

(p− rj) +
k∑

j=1

sj = np−
n∑

j=1

rj +
k∑

j=1

sj . (12.2)

Subtracting (12.2) from (12.1), we get

(a− 1)
(p−1)/2∑

j=1

j = p

( (p−1)/2∑
j=1

bja/pc − n
)

+ 2
n∑

j=1

rj . (12.3)

Note that
(p−1)/2∑

j=1

j =
p2 − 1

8
, (12.4)

which together with (12.3) implies

(a− 1)
p2 − 1

8
≡

(p−1)/2∑
j=1

bja/pc − n (mod 2). (12.5)
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If a is odd, (12.5) implies

n ≡
(p−1)/2∑

j=1

bja/pc (mod 2). (12.6)

If a = 2, then b2j/pc = 0 for j = 1, . . . , (p− 1)/2, and (12.5) implies

n ≡ p2 − 1
8

(mod 2). (12.7)

The theorem now follows from (12.6) and (12.7), together with Theo-
rem 12.5. 2

Note that this last theorem proves part (iv) of Theorem 12.4. The next
theorem proves part (v).

Theorem 12.7. If p and q are distinct odd primes, then

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

Proof. Let S be the set of pairs of integers (x, y) with 1 ≤ x ≤ (p−1)/2 and
1 ≤ y ≤ (q − 1)/2. Note that S contains no pair (x, y) with qx = py, so let
us partition S into two subsets: S1 contains all pairs (x, y) with qx > py,
and S2 contains all pairs (x, y) with qx < py. Note that (x, y) ∈ S1 if and
only if 1 ≤ x ≤ (p − 1)/2 and 1 ≤ y ≤ bqx/pc. So |S1| =

∑(p−1)/2
x=1 bqx/pc.

Similarly, |S2| =
∑(q−1)/2

y=1 bpy/qc. So we have

p− 1
2

q − 1
2

= |S| = |S1|+ |S2| =
(p−1)/2∑

x=1

bqx/pc+
(q−1)/2∑

y=1

bpy/qc,

and Theorem 12.6 implies

(p | q)(q | p) = (−1)
p−1
2

q−1
2 . 2

12.3 The Jacobi symbol

Let a, n be integers, where n is positive and odd, so that n = q1 · · · qk, where
the qi are odd primes, not necessarily distinct. Then the Jacobi symbol
(a | n) is defined as

(a | n) := (a | q1) · · · (a | qk),

where (a | qj) is the Legendre symbol. Note that (a | 1) = 1 for all a ∈ Z.
Thus, the Jacobi symbol essentially extends the domain of definition of the
Legendre symbol. Note that (a | n) ∈ {0,±1}, and that (a | n) = 0
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if and only if gcd(a, n) > 1. Also, note that if a is a quadratic residue
modulo n, then (a | n) = 1; however, (a | n) = 1 does not imply that a
is a quadratic residue modulo n. The following theorem summarizes the
essential properties of the Jacobi symbol.

Theorem 12.8. Let m,n be odd, positive integers, an let a, b be integers.
Then

(i) (ab | n) = (a | n)(b | n);

(ii) (a | mn) = (a | m)(a | n);

(iii) a ≡ b (mod n) implies (a | n) = (b | n);

(iv) (−1 | n) = (−1)(n−1)/2;

(v) (2 | n) = (−1)(n2−1)/8;

(vi) (m | n) = (−1)
m−1

2
n−1

2 (n | m).

Proof. Parts (i)–(iii) follow directly from the definition (exercise).
For parts (iv) and (vi), one can easily verify (exercise) that for odd integers

n1, . . . , nk,
k∑

i=1

(ni − 1)/2 ≡ (n1 · · ·nk − 1)/2 (mod 2).

Part (iv) easily follows from this fact, along with part (ii) of this theorem and
part (i) of Theorem 12.4 (exercise). Part (vi) easily follows from this fact,
along with parts (i) and (ii) of this theorem, and part (v) of Theorem 12.4
(exercise).

For part (v), one can easily verify (exercise) that for odd integers
n1, . . . , nk, ∑

1≤i≤k

(n2
i − 1)/8 ≡ (n2

1 · · ·n2
k − 1)/8 (mod 2).

Part (v) easily follows from this fact, along with part (ii) of this theorem,
and part (iv) of Theorem 12.4 (exercise). 2

As we shall see later, this theorem is extremely useful from a computa-
tional point of view—with it, one can efficiently compute (a | n), without
having to know the prime factorization of either a or n. Also, in applying
this theorem it is useful to observe that for odd integers m,n,

• (−1)(n−1)/2 = 1 iff n ≡ 1 (mod 4);

• (−1)(n2−1)/8 = 1 iff n ≡ ±1 (mod 8);

• (−1)((m−1)/2)((n−1)/2) = 1 iff m ≡ 1 (mod 4) or n ≡ 1 (mod 4).
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It is sometimes useful to view the Jacobi symbol as a group homomor-
phism. Let n be an odd, positive integer. Define the Jacobi map

Jn : Z∗n → {±1}
[a]n 7→ (a | n).

First, we note that by part (iii) of Theorem 12.8, this definition is unam-
biguous. Second, we note that since gcd(a, n) = 1 implies (a | n) = ±1, the
image of Jn is indeed contained in {±1}. Third, we note that by part (i) of
Theorem 12.8, Jn is a group homomorphism.

Since Jn is a group homomorphism, it follows that its kernel, ker(Jn), is
a subgroup of Z∗n.

Exercise 12.1. Let n be an odd, positive integer. Show that [Z∗n : (Z∗n)2] =
2r, where r is the number of distinct prime divisors of n.

Exercise 12.2. Let n be an odd, positive integer, and consider the Jacobi
map Jn.

(a) Show that (Z∗n)2 ⊆ ker(Jn).

(b) Show that if n is the square of an integer, then ker(Jn) = Z∗n.

(c) Show that if n is not the square of an integer, then [Z∗n : ker(Jn)] = 2
and [ker(Jn) : (Z∗n)2] = 2r−1, where r is the number of distinct prime
divisors of n.

Exercise 12.3. Let p and q be distinct primes, with p ≡ q ≡ 3 (mod 4),
and let n := pq.

(a) Show that [−1]n ∈ ker(Jn) \ (Z∗n)2, and from this, conclude that
the cosets of (Z∗n)2 in ker(Jn) are the two distinct cosets (Z∗n)2 and
[−1]n(Z∗n)2.

(b) Show that the squaring map on (Z∗n)2 is a group automorphism.

(c) Let δ ∈ Z∗n\ker(Jn). Show that the map from {0, 1}×{0, 1}×(Z∗n)2 →
Z∗n that sends (a, b, γ) to δa(−1)bγ is a bijection.

12.4 Notes

The proof we present here of Theorem 12.4 is essentially the one from Niven
and Zuckerman [68]. Our proof of Theorem 12.8 is essentially the one found
in Bach and Shallit [12].


